Gluten related PD

Gluten ataxia
File:Gluten ataxia eng.ogv
en.wikipedia.org/wiki/Gluten

Gluten ataxia is an autoimmune disease triggered by the ingestion of gluten.[75] With gluten ataxia, damage takes place in the cerebellum, the balance center of the brain that controls coordination and complex movements like walking, speaking and swallowing, with loss of Purkinje cells. People with gluten ataxia usually present gait abnormality or incoordination and tremor of the upper limbs. Gaze-evoked nystagmus and other ocular signs of cerebellar dysfunction are common. Myoclonus, palatal tremor, and opsoclonus-myoclonus may also appear.[76]

Early diagnosis and treatment with a gluten-free diet can improve ataxia and prevent its progression. The effectiveness of the treatment depends on the elapsed time from the onset of the ataxia until diagnosis, because the death of neurons in the cerebellum as a result of gluten exposure is irreversible.[76][77]

Gluten ataxia accounts for 40% of ataxias of unknown origin and 15% of all ataxias.[76][78] Less than 10% of people with gluten ataxia present any gastrointestinal symptom, yet about 40% have intestinal damage.[76]

Other neurological disorders
In addition to gluten ataxia, gluten sensitivity can cause a wide spectrum of neurological disorders, which develop with or without the presence of digestive symptoms or intestinal damage.[13] These include peripheral neuropathy, epilepsy, headache, encephalopathy, vascular dementia, and various movement disorders (restless legs syndrome, chorea, parkinsonism, Tourette syndrome, palatal tremor, myoclonus, dystonia, opsoclonus myoclonus syndrome, paroxysms, dyskinesia, myorhythmia, myokymia).[13][79]

The diagnosis of underlying gluten sensitivity is complicated and delayed when there are no digestive symptoms. People who do experience gastrointestinal problems are more likely to receive a correct diagnosis and treatment. A strict gluten-free diet is the first-line treatment, which should be started as soon as possible. It is effective in most of these disorders. When dementia has progressed to an advanced degree, the diet has no beneficial effect. Cortical myoclonus appears to be treatment-resistant on both gluten-free diet and immunosuppression.[13]

Keto diet is a better mitochondrial therapy than ketones supplement in Parkinson’s disease

(2021). The therapeutic potential of ketone bodies in Parkinson’s disease. Expert Review of Neurotherapeutics: Vol. 21, No. 3, pp. 255-257.

Source: The therapeutic potential of ketone bodies in Parkinson’s disease

…Ketone supplementation combined with a regular carbohydrate-rich diet creates an unphysiological metabolic state that could undermine efficacy. A more promising approach may be to maintain a steady state of ketosis with a KD, while periodically boosting ketone concentration with supplementation. Progress will need to be made in developing a regimen that can be sustained for years, identifying individuals most likely to respond to ketone therapy, determining the threshold concentration for therapeutic ketosis, and managing other pharmacological treatments and social constraints. However, the bioenergetic potential of ketones and their wide-ranging pleiotropic effects indicate that ketone therapy holds considerable promise in PD and warrants further investigation.

Oral Glutamine Increases Circulating GLP-1, Glucagon and Insulin Levels in Lean, Obese and Type 2 Diabetic Subjects

Glutamine effectively increases circulating GLP-1, GIP and insulin levels in vivo and may represent a novel therapeutic approach to stimulating insulin secretion in obesity and type 2 diabetes.

Keywords: GLP-1, GIP, glucagon, insulin secretion, glutamine

Source: Oral Glutamine Increases Circulating GLP-1, Glucagon and Insulin Levels in Lean, Obese and Type 2 Diabetic Subjects

Adequate Vitamin B12 and low Homocysteine Levels may slow  progression of PD

Source: Vitamin B12 and Homocysteine Levels Predict Different Outcomes in Early Parkinson’s Disease

Background: In moderately advanced Parkinson’s disease (PD), low serum vitamin B12 levels are common and are associated with neuropathy and cognitive impairment. However, little is known about B12 in early PD.

Objective: To determine the prevalence of low vitamin B12 status in early PD and whether it is associated with clinical progression.

Methods: We measured vitamin B12 and other B12 status determinants (methylmalonic acid, , and holotranscobalamin) in 680 baseline and 456 follow-up serum samples collected from DATATOP participants with early, untreated PD. Borderline low B12 status was defined as serum B12 <184 pmol/L (250 pg/mL), and elevated homocysteine was defined as >15 µmol/L. Outcomes included the UPDRS, ambulatory capacity score (sum of UPDRS items 13-15, 29&30), and MMSE, calculated as annualized rates of change.

Results: At baseline, 13% had borderline low B12 levels, 7% had elevated homocysteine, whereas 2% had both. Elevated homocysteine at baseline was associated with worse scores on the baseline MMSE. Analysis of study outcomes showed that compared with the other tertiles, participants in the low B12 tertile (<234 pmol/L; 317 pg/mL) developed greater morbidity as assessed by greater annualized worsening of the ambulatory capacity score. Elevated homocysteine was associated with greater annualized decline in MMSE (−1.96 vs. 0.06; P = 0001). Blood count indices were not associated with B12 or homocysteine status. Conclusions: In this study of early PD, low B12 status was common. Low B12 at baseline predicted greater worsening of mobility whereas elevated homocysteine predicted greater cognitive decline. Given that low B12 and elevated homocysteine can improve with vitamin supplementation, future studies should test whether prevention or early correction of these nutritionally modifiable conditions slows development of disability. © 2018 International Parkinson and Movement Disorder Society Supporting Informatio

probiotics Bacillus subtilis PXN® 21® eliminates alpha-synuclein aggregates, possible PD treatment

Article in Cell megazine:
www.cell.com/cell-reports/fulltext/S2211-1247(19)31743-7?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124719317437%3Fshowall%3Dtrue

where to buy:

www.bio-kult.com/aboutmigrea

Exenatide, a GLP-1 receptor agonist licensed to treat type 2 diabetes, and recently shown to be associated with reduced severity of PD

pubmed.ncbi.nlm.nih.gov/32247373/

pubmed.ncbi.nlm.nih.gov/33409802/

1 completed research findings
www.thelancet.com/journals/lancet/article/PIIS0140-6736(17)31585-4/fulltext

Exenatide had positive effects on practically defined off-medication motor scores in Parkinson’s disease, which were sustained beyond the period of exposure. Whether exenatide affects the underlying disease pathophysiology or simply induces long-lasting symptomatic effects is uncertain. Exenatide represents a major new avenue for investigation in Parkinson’s disease, and effects on everyday symptoms should be examined in longer-term trials.

Supplement alternative – Glutamine >> 

 

LSVT voice therapy

we suggest that LSVT encourages acceptance of and comfort with increased loudness and the ability to self-monitor vocal loudness. Addressing this apparent sensory mismatch between vocal effort and vocal output may contribute to generalization and maintenance of treatment effects. Finally, treatment that is simple, redundant, and intensive may help accommodate the processing speed, memory, and executive function deficits observed in some individuals with IPD. It may also promote overlearning and internalization of the vocal effort required for normal loudness

pubs.asha.org/doi/full/10.1044/1058-0360%282002/012%29

Our 15 years of research have generated the first short- and long-term efficacy data for speech treatment (Lee Silverman Voice Treatment; LSVT/LOUD) in Parkinson’s disease. We have learned that training the single motor control parameter amplitude (vocal loudness) and recalibration of self-perception of vocal loudness are fundamental elements underlying treatment success. This training requires intensive, high-effort exercise combined with a single, functionally relevant target (loudness) taught across simple to complex speech tasks. We have documented that training vocal loudness results in distributed effects of improved articulation, facial expression, and swallowing. Furthermore, positive effects of LSVT/LOUD have been documented in disorders other than Parkinson’s disease (stroke, cerebral palsy). The purpose of this article is to elucidate the potential of a single target in treatment to encourage cross-system improvements across seemingly diverse motor systems and to discuss key elements in mode of delivery of treatment that are consistent with principles of neural plasticity.

www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2006-955118

 

 

Rehabilitation of Mitochondria by Lipid Replacement

According to Dr. Garth Nicholson, with prolonged mycoplasma viral infections, the pathogen penetrates cells and causes mitochondrial damage. The phenomenon is typical in a number of chronic diseases (for the infection as a cause of chronic diseases go here), as a result of cancer treatments, and as a result of aging. Declined mitochondrial function causes fatigue and other damage.

For the role of mitochondria in idiopathic Parkinson’s go here, and here.

The above treatment was originally developed for anti-aging.

LRT – Lipid Replacement Therapy

Treatment is by capsules containing lipids needed to repair the mitochondria. Capsules contain a higher concentration of lipids than found in food. The capsules preserve their integrity as they travel through the digestive system. In essence, it is a nutritional supplement.

A short explanation of LRT:

As discussed in the video, it can be assumed that a diet based on unprocessed and uncooked organic food will have good results.

Here is a study showing a significant improvement in mitochondrial function after taking an NT Factor supplement pack for 12 weeks.

NT Factor Contents:

NTFactor® is a nutrient complex that is extracted and prepared using a proprietary process that protects lipids from oxidation. In addition, nutrients, vitamins and probiotic microorganisms are added to the preparation. It contains the following ingredients: Glycophospholipids: polyunsaturated phosphatidylcholine, other polyunsaturated phosphatidyl lipids, glycolipids and other lipids such as cardiolipin and sterol lipids. Probiotics: Bifido bacterium, Lactobacillus acidophilus and Lactobacillus bacillus in a freeze-dried, microencapsulated form with appropriate growth nutrients. Food Supplements, Vitamins and Growth Media: bacterial growth factors to support probiotic growth, including defatted rice bran, arginine, beet root fiber extract, black strap molasses, glycine, magnesium sulfate, para-amino-benzoate, leek extract, pantethine (bifidus growth factor), taurine, garlic extract, calcium borogluconate, artichoke extract, potassium citrate, calcium sulfate, spirulina, bromelain, natural vitamin E, calcium ascorbate, alpha-lipoic acid, oligosaccharides, vitamin B-6, niacinamide, riboflavin, inositol, niacin, calcium pantothenate, thiamin, vitamin B-12, folic acid, chromium picolinate.

Additional Information and Purchase:

Caloric vestibular stimulation (CVS) relieved motor and non-motor symptoms(PD)

repeated sessions of caloric vestibular stimulation (CVS) relieved motor and non-motor symptoms associated with Parkinson’s disease (PD).

www.prd-journal.com/article/S1353-8020(19)30252-4/fulltext

Caloric vestibular stimulation involves the transmission of either warm or cool temperature, usually via water or air, from the external ear canal to the vestibular organs located in the adjacent labyrinth

 

Future: The A1 astrocyte paradigm: New way for pharmacological intervention in neurodegeneration – PubMed

We recently demonstrated that NLY01, a novel glucagon-like peptide-1 receptor agonist, exerts neuroprotective effects in two mouse models of PD in a glia-dependent manner. NLY01 prevented microglia from releasing inflammatory mediators known to convert astrocytes into a neurotoxic A1 reactive subtyp …

Source: The A1 astrocyte paradigm: New avenues for pharmacological intervention in neurodegeneration – PubMed